Главная стр 1
скачать

Рассмотрено на заседании

МО учителей математики

Протокол №__ от ______

____________ 2013года

Руководитель МО ________________

/Звягинцева Н.П./



Согласовано

Заместитель директора

по УВР

/ /



Утверждаю

Директор


МКОУ «Новохоперская гимназия №1»

_________/Макогонова Г.И./




Рабочая программа

Завгородней Елены Викторовны,1КК

по математике, 11 «б» класс.

Количество часов в неделю: 7часов. Количество часов за год: 238 часов

УМК:

  1. А.Г. Мордковича и др. «Алгебра и начала анализа» (профильный уровень), 11 класс, М. «Мнемозина», 2010 год (учебник рекомендован Министерством образования и науки Российской Федерации).

  2. Л,С, Атанасян, В.Ф. Бутузов, М. «Геометрия,10-11», М. «Мнемозина», 2010 год (учебник рекомендован Министерством образования и науки Российской Федерации).


2013-2014учебный год

Пояснительная записка.
Тематическое планирование составлено

на основе федерального компонента государственного стандарта общего образования примерной программы по математике основного общего образования,2004 год ( http://mon.gov.ru).

федерального перечня учебников рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2011-12 учебный год,

с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования,

авторского тематического планирования учебного материала, представленного в учебнике.
В профильном курсе содержание образования, представленное в основной школе, развивается в следующих направлениях:

• развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;

• систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;

• развитие представлений о вероятностно-статистических закономерностях в окружающем мире;

• совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;

• формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.


      1. Цели


Изучение математики в старшей школе на профильном уровне направлено на достижение следующих целей:

  • формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;

  • овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественно- научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;

  • развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;

  • воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.



Общеучебные умения, навыки и способы деятельности

В ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:

проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;

решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;

планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;

самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.




            1. Место предмета в базисном учебном плане

Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе основного общего образования( профильный курс) отводится 6 часов математики. Из школьного компонента добавлен 1 час, итого 224 часа в год.

Алгебра и начала анализа

Тематическое планирование составлено к УМК А.Г. Мордковича и др. «Алгебра и начала анализа», 11 класс, М. «Мнемозина», 2007 год и последующие издания на основе федерального компонента государственного стандарта общего образования, с учетом авторского тематического планирования учебного материала, приведенного в учебнике ( учебник рекомендован Министерством образования и науки Российской Федерации).



Обязательный минимум содержания.

Числовые и буквенные выражения.

Многочлены от одной переменной. Многочлены от нескольких переменных, симметрические многочлены.

Корень степени n>1 и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем. Свойства степени с действительным показателем.

Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число е.

Преобразования выражений, включающих арифметические операции, а также операции возведения в степень и логарифмирования.

Функции.

Степенная функция с натуральным показателем, её свойства и график. Показательная функция (экспонента), её свойства и график.

Логарифмическая функция, её свойства и график.

Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y=x, растяжение и сжатие вдоль осей координат.



Начала математического анализа.

Площадь криволинейной трапеции. Понятие об определенном интеграле. Первообразная. Первообразные элементарных функций. Правила вычисления первообразных. Формула Ньютона-Лейбница.

Примеры применения интеграла в физике и геометрии.

Уравнения и неравенства.

Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных и тригонометрических уравнений и неравенств.

Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение систем уравнений с двумя неизвестными простейших типов. Решение систем неравенств с одной переменной.

Доказательства неравенств. Неравенство о среднем арифметическом и среднем геометрическом двух чисел.

Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.

Элементы комбинаторики, статистики и теории вероятностей.

Табличное и графическое представление данных. Числовые характеристики рядов данных.



Тематическое планирование учебного материала «Алгебра и начала анализа» 11 класс (профильный уровень) по УМК А.Г. Мордковича и др.

Номер пункта

Содержание материала

Кол. часов




Повторение

11

Глава 1.

Многочлены

14




Многочлены от одной переменной.

2




Многочлены от нескольких переменных.

2




Уравнения высших степеней.

4




Учебно- тренировочные задания ЕГЭ

5




Контрольная работа № 1.

1

Глава 2.

Первообразная и интеграл.

9




Первообразная и неопределенный интеграл.

4




Определенный интеграл.

4




Контрольная работа № 2.

1

Глава 3.

Степени и корни. Степенные функции.

23




Понятие корня n-ой степени из действительного числа.

2




Функции y= , их свойства и графики.

2




Свойства корня n-ой степени.

2




Преобразование выражений, содержащих

радикалы.



5




Обобщение понятия о показателе степени.

2




Степенные функции, их свойства и графики.

3




Извлечение корня из комплексного числа.

1




Контрольная работа №3

1




Учебно- тренировочные задания ЕГЭ

5

Глава 4.

Показательная и логарифмическая функции.

44




Показательная функция, её свойства и график.

5




Показательные уравнения.

5




Показательные неравенства.

5




Понятие логарифма.

3




Логарифмическая функция, её свойства и график.

4




Свойства логарифмов.

4




Логарифмические уравнения.

5




Логарифмические неравенства.

5




Дифференцирование показательной и логарифмической функций.

2




Учебно- тренировочные задания ЕГЭ

5




Контрольная работа № 4

1

Глава 5.

Элементы теории вероятностей и математической статистики.

4




Вероятность и геометрия.

1




Независимые повторения испытаний с двумя

исходами.



1




Статистические методы обработки информации.

1




Гауссова кривая. Закон больших чисел.

1

Глава 6.

Уравнения и неравенства. Системы уравнений и неравенств.

43




Равносильность уравнений.

2




Общие методы решения уравнений.

4




Решение неравенств.

3




Уравнения и неравенства с модулями.

4




Контрольная работа № 5

1




Иррациональные уравнения и неравенства.

4




Уравнения и неравенства с двумя переменными.

2




Доказательство неравенств.

2




Системы уравнений.

5




Контрольная работа № 6

2




Задачи с параметрами.

8




Учебно- тренировочные задания ЕГЭ

6




Повторение.

22




Итого

170


Требования к уровню подготовки выпускников

В результате изучения математики на профильном уровне в старшей школе ученик должен

Знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;

  • идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;

  • значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;

  • универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;

  • различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;

  • роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;

  • вероятностных характер различных процессов и закономерностей окружающего мира.

Числовые и буквенные выражения


Уметь:

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • применять понятия, связанные с делимостью целых чисел, при решении математических задач;

  • находить корни многочленов с одной переменной, раскладывать многочлены на множители;

  • выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, в простейших случаях находить комплексные корни уравнений с действительными коэффициентами;

  • проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.

Функции и графики


Уметь

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций, выполнять преобразования графиков;

  • описывать по графику и по формуле поведение и свойства функций;

  • решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов.

Начала математического анализа


Уметь

  • находить сумму бесконечно убывающей геометрический прогрессии;

  • вычислять производные и первообразные элементарных функций, применяя правила вычисления производных и первообразных, используя справочные материалы;

  • исследовать функции и строить их графики с помощью производной,;

  • решать задачи с применением уравнения касательной к графику функции;

  • решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;

  • вычислять площадь криволинейной трапеции;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа.

Уравнения и неравенства


Уметь

  • решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;

  • доказывать несложные неравенства;

  • решать текстовые задачи с помощью составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи;

  • изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

  • находить приближенные решения уравнений и их систем, используя графический метод;

  • решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • построения и исследования простейших математических моделей.

Элементы комбинаторики, статистики и теории вероятностей

Уметь:

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона по формуле и с использованием треугольника Паскаля;

  • вычислять, в простейших случаях, вероятности событий на основе подсчета числа исходов.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков; для анализа информации статистического характера.

Геометрия

Тематическое планирование составлено к учебнику для 10-11 классов общеобразовательных школ авторов Л,С, Атанасян, В.Ф. Бутузов, М.: Просвещение, 2007г. и последующие издания на основе федерального компонента государственного стандарта общего образования с учетом авторского тематического планирования учебного материала.



Пояснительная записка

Тематическое планирование по геометрии составлено:

- на основе федерального компонента государственного стандарта среднего (полного) общего образования,

- примерной программы по математике основного общего образования,

-федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2011-2012 учебный год,

с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования,

- авторского тематического планирования учебного материала,

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся 11 класса средствами данного учебного предмета.

Организационно-планирующая функция предусматривает структурирование учебного материала, определение его количественных и качественных характеристик .

Данное тематическое планирование, тем самым содействует сохранению единого образовательного пространства, не сковывая творческой инициативы учителей, предоставляет широкие возможности для реализации различных подходов к построению учебного курса.


      1. Общая характеристика учебного предмета


При изучении курса математики на базовом уровне продолжается и получает развитие содержательная линия: «Геометрия». В рамках указанной содержательной линии решаются следующие задачи:

-изучение свойств пространственных тел,

- формирование умения применять полученные знания для решения практических задач.

      1. Цели


Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

  • воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.
            1. Общеучебные умения, навыки и способы деятельности

В ходе освоения содержания геометрического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

-построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;



-выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале;

- выполнения расчетов практического характера;

-использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

-самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

-проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

-самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.


Основное содержание


Координаты и векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

Векторы. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Длина вектора в координатах, угол между векторами в координатах. Коллинеарные векторы, колллинеарность векторов в координатах.



Тела и поверхности вращения. Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.

Шар и сфера, их сечения, касательная плоскость к сфере.



Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.



Тематическое планирование к учебнику

Л.С. Атанасяна и др. «Геометрия, 10-11»

Содержание материала


Кол-во часов




Глава V. Метод координат в пространстве

12

17

23

16


§1. Координаты точки и координаты вектора. Контрольная работа № 5.1

§2. Скалярное произведение векторов

Контрольная работа № 5.2

Глава VI. Цилиндр, конус, шар

§1. Цилиндр. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.

§2. Конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.

§3. Сфера и шар, их сечения, касательная плоскость к сфере

Решение задач

Контрольная работа № 6.1

Глава VII. Объемы тел

§1. Понятие об объеме тела. Объем прямоугольного параллелепипеда

§2. Объем прямой призмы и цилиндра

§3. Объем наклонной призмы, пирамиды и конуса. Отношение объемов подобных тел

Контрольная работа № 7.1


§4. Объем шара и площадь сферы

Решение задач

Контрольная работа № 7.2

Заключительное повторение при подготовке к итоговой аттестации по геометрии


ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ ВЫПУСКНИКОВ


В результате изучения геометрии на базовом уровне ученик должен

знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

уметь

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

  • анализировать в простейших случаях взаимное расположение объектов в пространстве;

  • изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

  • строить простейшие сечения куба, призмы, пирамиды;

  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

  • использовать при решении стереометрических задач планиметрические факты и методы;

  • проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

Критерии и нормы оценки знаний, умений и навыков, обучающихся по математике.

1.Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:



  • работа выполнена полностью;

  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;

  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2.Оценка устных ответов обучающихся по математике


Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;

  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;

  • продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;

  • отвечал самостоятельно, без наводящих вопросов учителя;

  • возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;

  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

  • допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);

  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;

  • обнаружено незнание учеником большей или наиболее важной части учебного материала;

  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

1. Грубыми считаются ошибки:


      • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;

      • незнание наименований единиц измерения;

      • неумение выделить в ответе главное;

      • неумение применять знания, алгоритмы для решения задач;

      • неумение делать выводы и обобщения;

      • неумение читать и строить графики;

      • неумение пользоваться первоисточниками, учебником и справочниками;

      • потеря корня или сохранение постороннего корня;

      • отбрасывание без объяснений одного из них;

      • равнозначные им ошибки;

      • вычислительные ошибки, если они не являются опиской;

      • логические ошибки.

2. К негрубым ошибкам следует отнести:

      • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;

      • неточность графика;

      • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);

      • нерациональные методы работы со справочной и другой литературой;

3. Недочетами являются:

      • нерациональные приемы вычислений и преобразований;

      • небрежное выполнение записей, чертежей, схем, графиков.

Сокращения, используемые в рабочей программе:

Типы уроков:

УОНМ — урок ознакомления с новым материалом.

УЗИМ — урок закрепления изученного материала.

УПЗУ — урок применения знаний и умений.

УОСЗ — урок обобщения и систематизации знаний.

УПКЗУ — урок проверки и коррекции знаний и умений.

КУ — комбинированный урок.

Виды контроля:

ФО — фронтальный опрос.

ИРД — индивидуальная работа у доски.

ИРК — индивидуальная работа по карточкам.

СР — самостоятельная работа.

ПР — проверочная работа.

МД — математический диктант.

Т – тестовая работа.

КР- контрольная работа

Список литературы

1. Геометрия,10-11: Учеб. Для общеобразовательных учреждений/Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.- М.: Просвещение, 2003.

2. С.М.Саакян, В.Ф. Бутузов. Изучение геометрии в 10-11 классах: Методические рекомендации к учебнику. Книга для учителя.-М.:Просвещение,2001.

3. Мордкович А.Г. Алгебра и начала анализа. 11 кл.: В двух частях. Ч. 1: Учебник для общеобразовательных учреждений (профильный уровень) / А.Г. Мордкович, П.В. Семенов. – М.: Мнемозина, 2007.

4. Алгебра и начала анализа. 11 кл.: В двух частях. Ч. 2: Задачник для общеобразовательных учреждений (профильный уровень) / А.Г. Мордкович, Л.О. Денищева, Л.И. Звавич, Т.А. Корешкова, Т.Н. Мишустина, А.Р. Рязановский, П.В. Семенов; под ред. А.Г. Мордковича. – М.: Мнемозина, 2007.

Для обеспечения плодотворного учебного процесса предполагается



использование информации и материалов следующих Интернет – ресурсов:

  • Министерство образования РФ:   

http://www.informika.ru/; 
http://www.ed.gov.ru/;  
http://www.edu.ru/ 

  • Тестирование online: 5 - 11 классы:     

http://www. Uztest.ru

  • Педагогическая мастерская, уроки в Интернет и многое другое: 

http://teacher.fio.ru

  • Новые технологии в образовании:    

 http://edu.secna.ru/main/

  • Путеводитель «В мире науки» для школьников:  

http://www.uic.ssu.samara.ru/~nauka/

  • Мегаэнциклопедия Кирилла и Мефодия:      

http://mega.km.ru

  • сайты «Энциклопедий энциклопедий», например: 

http://www.rubricon.ru/;    
http://www.encyclopedia.ru/
скачать


Смотрите также:
Рассмотрено на заседании мо учителей математики
284.83kb.
Рассмотрено на заседании шмо учителей математики
300.61kb.
Рассмотрено на заседании шмо учителей математики
405.68kb.
«Компьютер на уроках математики» (выступление на совместном заседании шмо начальных классов и шмо учителей математики) Учитель математики Звонова Т. А
104.38kb.
Моу сош пгт. Новокручининский Рассмотрено: на заседании мо учителей математики и информатики
380.63kb.
Прохладненский район кбр формы развивающего обучения на уроках математики
100.6kb.
«Рассмотрено» На заседании тг учителей естественно -математического цикла
67.92kb.
«Рассмотрено» на заседании мо учителей естественно-математического цикла
231.63kb.
Доклад на кустовом заседании учителей математики
131.66kb.
На заседании шмо учителей математики, физики и информатики
270.58kb.
Программа принята на заседании рмо учителей математики
224.8kb.
На заседании шмо учителей математики, физики и информатики
255.29kb.